Learning gradients by a gradient descent algorithm
نویسندگان
چکیده
منابع مشابه
Online gradient descent learning algorithm†
This paper considers the least-square online gradient descent algorithm in a reproducing kernel Hilbert space (RKHS) without an explicit regularization term. We present a novel capacity independent approach to derive error bounds and convergence results for this algorithm. The essential element in our analysis is the interplay between the generalization error and a weighted cumulative error whi...
متن کاملLearning to learn by gradient descent by gradient descent
The move from hand-designed features to learned features in machine learning has been wildly successful. In spite of this, optimization algorithms are still designed by hand. In this paper we show how the design of an optimization algorithm can be cast as a learning problem, allowing the algorithm to learn to exploit structure in the problems of interest in an automatic way. Our learned algorit...
متن کاملLearning to Learn without Gradient Descent by Gradient Descent
We learn recurrent neural network optimizers trained on simple synthetic functions by gradient descent. We show that these learned optimizers exhibit a remarkable degree of transfer in that they can be used to efficiently optimize a broad range of derivative-free black-box functions, including Gaussian process bandits, simple control objectives, global optimization benchmarks and hyper-paramete...
متن کاملLearning by Online Gradient Descent
We study online gradient{descent learning in multilayer networks analytically and numerically. The training is based on randomly drawn inputs and their corresponding outputs as deened by a target rule. In the thermo-dynamic limit we derive deterministic diierential equations for the order parameters of the problem which allow an exact calculation of the evolution of the generalization error. Fi...
متن کاملLearning by Gradient Descent in Function Space
Traditional connectionist networks have homogeneous nodes wherein each node executes the same function. Networks where each node executes a di erent function can be used to achieve e cient supervised learning. A modi ed back-propagation algorithm for such networks, which performs gradient descent in \function space," is presented and its advantages are discussed. The bene ts of the suggested pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2008
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2007.10.044